portfolio_toolkit.optimization package
Submodules
portfolio_toolkit.optimization.compute_var module
- portfolio_toolkit.optimization.compute_var.compute_var(optimization: Optimization) float [source]
Computes Value at Risk (VaR) for a portfolio based on optimization results.
- Parameters:
optimization (Optimization) – Optimization object containing portfolio weights and covariance matrix.
- Returns:
Value at Risk in monetary units.
- Return type:
portfolio_toolkit.optimization.optimization module
- class portfolio_toolkit.optimization.optimization.Optimization(name: str, currency: str, assets: List[OptimizationAsset], data_provider: DataProvider, returns: DataFrame | None = None, covariance_matrix: DataFrame | None = None, weights: Series | None = None)[source]
Bases:
object
Class to represent and manage an asset optimization.
- assets: List[OptimizationAsset]
- data_provider: DataProvider
portfolio_toolkit.optimization.parser module
- portfolio_toolkit.optimization.parser.create_optimization_from_json(data: dict, data_provider: DataProvider) Optimization [source]
Loads and validates a JSON file containing optimization information.
- Parameters:
json_filepath (str) – Path to the JSON file to load data from.
data_provider (DataProvider) – Data provider instance for fetching ticker information.
- Returns:
An instance of the Optimization class with loaded assets.
- Return type:
Module contents
- class portfolio_toolkit.optimization.Optimization(name: str, currency: str, assets: List[OptimizationAsset], data_provider: DataProvider, returns: DataFrame | None = None, covariance_matrix: DataFrame | None = None, weights: Series | None = None)[source]
Bases:
object
Class to represent and manage an asset optimization.
- __init__(name: str, currency: str, assets: List[OptimizationAsset], data_provider: DataProvider, returns: DataFrame | None = None, covariance_matrix: DataFrame | None = None, weights: Series | None = None) None
- assets: List[OptimizationAsset]
- data_provider: DataProvider