portfolio_toolkit.asset package
Subpackages
- portfolio_toolkit.asset.market package
- portfolio_toolkit.asset.optimization package
- Submodules
- Module contents
OptimizationAsset
OptimizationAsset.__init__()
OptimizationAsset.expected_return
OptimizationAsset.quantity
OptimizationAsset.to_dataframe()
OptimizationAsset.returns
OptimizationAsset.log_returns
OptimizationAsset.mean_return
OptimizationAsset.volatility
OptimizationAsset.ticker
OptimizationAsset.prices
OptimizationAsset.info
OptimizationAsset.sector
OptimizationAsset.country
- portfolio_toolkit.asset.portfolio package
- Submodules
- Module contents
PortfolioAsset
PortfolioAsset.__init__()
PortfolioAsset.add_split()
PortfolioAsset.add_transaction()
PortfolioAsset.add_transaction_from_dict()
PortfolioAsset.from_ticker()
PortfolioAsset.to_dataframe()
PortfolioAsset.transactions
PortfolioAsset.ticker
PortfolioAsset.prices
PortfolioAsset.info
PortfolioAsset.sector
PortfolioAsset.country
PortfolioAssetTransaction
PortfolioAssetTransaction.__init__()
PortfolioAssetTransaction.to_dataframe()
PortfolioAssetTransaction.date
PortfolioAssetTransaction.transaction_type
PortfolioAssetTransaction.quantity
PortfolioAssetTransaction.price
PortfolioAssetTransaction.currency
PortfolioAssetTransaction.total
PortfolioAssetTransaction.exchange_rate
PortfolioAssetTransaction.subtotal_base
PortfolioAssetTransaction.fees_base
PortfolioAssetTransaction.total_base
Module contents
- class portfolio_toolkit.asset.MarketAsset(ticker: str, prices: pandas.core.series.Series, info: Dict, currency: str | None = None)[source]
Bases:
object
- class portfolio_toolkit.asset.PortfolioAssetTransaction(date: str, transaction_type: str, quantity: float, price: float, currency: str, total: float, exchange_rate: float, subtotal_base: float, fees_base: float, total_base: float)[source]
Bases:
object
- __init__(date: str, transaction_type: str, quantity: float, price: float, currency: str, total: float, exchange_rate: float, subtotal_base: float, fees_base: float, total_base: float) None
- class portfolio_toolkit.asset.PortfolioAsset(ticker: str, prices: pandas.core.series.Series, info: Dict, currency: Optional[str] = None, transactions: List[portfolio_toolkit.asset.portfolio.portfolio_asset_transaction.PortfolioAssetTransaction] = <factory>)[source]
Bases:
MarketAsset
- __init__(ticker: str, prices: ~pandas.core.series.Series, info: ~typing.Dict, currency: str | None = None, transactions: ~typing.List[~portfolio_toolkit.asset.portfolio.portfolio_asset_transaction.PortfolioAssetTransaction] = <factory>) None
- add_split(split_dict: dict) float [source]
Adds a stock split to the portfolio asset by simulating sell all + buy equivalent. Creates a sell transaction for all held shares and a buy transaction for split-adjusted quantity.
- Parameters:
split_dict – Dictionary containing split information with keys: - date: Split date (str) - split_factor: Split ratio as float (e.g., 2.0 for 2:1 split, 0.1 for 1:10 reverse split)
- Returns:
- Cash amount to be added to account due to fractional shares sold
(only applies to reverse splits where shares are lost)
- Return type:
- add_transaction(transaction: PortfolioAssetTransaction)[source]
Adds a transaction to the portfolio asset.
- add_transaction_from_dict(transaction_dict: dict)[source]
Adds a transaction to the account from a dictionary.
- classmethod from_ticker(data_provider: DataProvider, ticker: str, currency: str | None = None) PortfolioAsset [source]
Create a PortfolioAsset from a ticker.
- classmethod to_dataframe(assets: List[PortfolioAsset]) DataFrame [source]
Convert a list of PortfolioAsset objects to a pandas DataFrame.
- transactions: List[PortfolioAssetTransaction]
- class portfolio_toolkit.asset.OptimizationAsset(ticker: str, prices: pandas.core.series.Series, info: Dict, currency: str | None = None, quantity: float = 0.0, expected_return: float = 0.0)[source]
Bases:
MarketAsset
- __init__(ticker: str, prices: Series, info: Dict, currency: str | None = None, quantity: float = 0.0, expected_return: float = 0.0) None
- classmethod to_dataframe(assets: List[OptimizationAsset]) DataFrame [source]
Convert a list of OptimizationAsset objects to a pandas DataFrame.